如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,下列结论:①CD=CB;②AD+AB=2AE;
如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD...
如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正确的是( )A.②B.①②③C.①②④D.①②③④
展开
展开全部
解:在EA上取点EF=BE,连接CF,
∵CE⊥AB,
∴CF=CB,
∴∠CFB=∠B,
∵∠AFC+∠CFB=180°,∠ADC+∠ABC=180°,
∴∠D=∠AFC,
∵AC平分∠BAD,
即∠DAC=∠FAC,
在△ACD和△ACF中,
,
∴△ACD≌△ACF(AAS),
∴CD=CF,
∴CD=CB,
故①正确;
∴AD=AF,
∴AD+AB=AF+AE+BE=AF+EF+AE=AE+AE=2AE.
故②正确;
根据已知条件无法证明∠ACD=∠BCE,
故③错误;
AB-AD=AB-AF=BF=2BE,
故④正确.
其中正确的是①②④.
故选C.
∵CE⊥AB,
∴CF=CB,
∴∠CFB=∠B,
∵∠AFC+∠CFB=180°,∠ADC+∠ABC=180°,
∴∠D=∠AFC,
∵AC平分∠BAD,
即∠DAC=∠FAC,
在△ACD和△ACF中,
|
∴△ACD≌△ACF(AAS),
∴CD=CF,
∴CD=CB,
故①正确;
∴AD=AF,
∴AD+AB=AF+AE+BE=AF+EF+AE=AE+AE=2AE.
故②正确;
根据已知条件无法证明∠ACD=∠BCE,
故③错误;
AB-AD=AB-AF=BF=2BE,
故④正确.
其中正确的是①②④.
故选C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询