
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h.求证:1a2+1b2=1h2
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h.求证:1a2+1b2=1h2....
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h.求证:1a2+1b2=1h2.
展开
2个回答
展开全部
解答:证明:在直角△ABC中,∠ACB=90°,CD⊥AB,则△ACB∽△ADC∽△CDB,
=
,即
=
,
∵h2(
+
)=
+
=
+
=
=1,
∴
+
=
.
CD |
AC |
BD |
BC |
CD2 |
AC2 |
BD2 |
BC2 |
∵h2(
1 |
a2 |
1 |
b2 |
CD2 |
BC2 |
CD2 |
AC2 |
CD2 |
BC2 |
BD2 |
BC2 |
=
BC2 |
BC2 |
∴
1 |
a2 |
1 |
b2 |
1 |
h2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询