已知数列{a n }的前n项和为S n ,若 S n =2 a n +n,且 b n = a n -1 a n a
已知数列{an}的前n项和为Sn,若Sn=2an+n,且bn=an-1anan+1.(1)求证:{an-1}为等比数列;(2)求数列{bn}的前n项和....
已知数列{a n }的前n项和为S n ,若 S n =2 a n +n,且 b n = a n -1 a n a n+1 .(1)求证:{a n -1}为等比数列;(2)求数列{b n }的前n项和.
展开
(1)由题意可得:当n≥2时,由 a n =S n -S n-1 =2a n +n-(2a n-1 +n-1),可得 a n =2a n-1 -1,…(2分) ∴a n+1 -1=2(a n-1 -1).…(4分) 又因为S 1 =2a 1 +1,所以a 1 =-1,a 1 -1=-2≠0, ∴{a n -1}是以-2为首项,2为公比的等比数列.…(7分) (2)由(1)知, a n -1=-2× 2 n-1 =- 2 n ,即 a n =- 2 n +1 ,…(9分) ∴ b n = - 2 n | (1- 2 n )(1- 2 n+1 ) | = - ,(11分) 故 T n =-[( - )+( - )+…+( - )]= -1 .(14分) |
收起
为你推荐: