2个回答
展开全部
设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有
f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),
若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。
如果"<="换成">="就是凸函数。类似也有严格凸函数。
设f(x)在区间D上连续,如果对D上任意两点a、b恒有
f((a+b)/2)<(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有
f((a+b)/2)>(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凸的(或凸弧)
这个定义从几何上看就是:
在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。
直观上看,凸函数就是图象向上突出来的。比如
如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0;[1-2]
f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),
若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。
如果"<="换成">="就是凸函数。类似也有严格凸函数。
设f(x)在区间D上连续,如果对D上任意两点a、b恒有
f((a+b)/2)<(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有
f((a+b)/2)>(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凸的(或凸弧)
这个定义从几何上看就是:
在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。
直观上看,凸函数就是图象向上突出来的。比如
如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0;[1-2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询