(2013?内江二模)已知ABCD是矩形,AD=4,AB=2,E、F分别是AB、BC 的中点,PA丄面ABCD.(1)求证:PF丄D
(2013?内江二模)已知ABCD是矩形,AD=4,AB=2,E、F分别是AB、BC的中点,PA丄面ABCD.(1)求证:PF丄DF;(2)若PD与面ABCD所成角为30...
(2013?内江二模)已知ABCD是矩形,AD=4,AB=2,E、F分别是AB、BC 的中点,PA丄面ABCD.(1)求证:PF丄DF;(2)若PD与面ABCD所成角为300在PA上找一点 G,使EG∥面PFD,并求出AG的长.
展开
1个回答
展开全部
解:(1)证明:连接AF,
∵在矩形ABCD中,AD=4,AB=2,F是线段BC的中点,
∴FC=CD,∴△FCD是等腰直角三角形,
∴∠DFC=45°,同理可得∠AFB=45°,
∴AF⊥FD.
又∵PA⊥面ABCD,∴PA⊥FD,∵AF∩PA=A
∴FD⊥平面PAF,∴PF⊥FD.(6分)
(2)在AP上存在点G,
且AG=
AP,使得EG∥平面PFD,
证明:取AD中点I,取AI中点H,连接BI,EH,EG,GH,
∵DI∥BF,DI=BF,∴四边形BFDI是平行四边形,
∴BI∥FD
又∵E、H分别是AB、AI的中点,
∴EH∥BI,∴EH∥FD
而EH?平面PFD,∴EH∥平面PFD
∵
=
=
,
∴GH∥PD
而GH?平面PFD,
∴HG∥平面PFD,又∵EH∩GH=H
∴平面EHG∥平面PFD
∴EG∥平面PFD,从而G为所求.
由PD与面ABCD所成角为30°,∴∠PDA=30°,
在直角三角PAD中,∴AP=
∵在矩形ABCD中,AD=4,AB=2,F是线段BC的中点,
∴FC=CD,∴△FCD是等腰直角三角形,
∴∠DFC=45°,同理可得∠AFB=45°,
∴AF⊥FD.
又∵PA⊥面ABCD,∴PA⊥FD,∵AF∩PA=A
∴FD⊥平面PAF,∴PF⊥FD.(6分)
(2)在AP上存在点G,
且AG=
1 |
4 |
证明:取AD中点I,取AI中点H,连接BI,EH,EG,GH,
∵DI∥BF,DI=BF,∴四边形BFDI是平行四边形,
∴BI∥FD
又∵E、H分别是AB、AI的中点,
∴EH∥BI,∴EH∥FD
而EH?平面PFD,∴EH∥平面PFD
∵
AG |
AP |
AH |
AD |
1 |
4 |
∴GH∥PD
而GH?平面PFD,
∴HG∥平面PFD,又∵EH∩GH=H
∴平面EHG∥平面PFD
∴EG∥平面PFD,从而G为所求.
由PD与面ABCD所成角为30°,∴∠PDA=30°,
在直角三角PAD中,∴AP=