二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac-b2<0;②4a+c<2b;③m(am+b)+b<a
二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac-b2<0;②4a+c<2b;③m(am+b)+b<a(m≠-1),④3b+2c<0;其中正确...
二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac-b2<0;②4a+c<2b;③m(am+b)+b<a(m≠-1),④3b+2c<0;其中正确结论是( )A.①②③B.①③④C.②③④D.①②④
展开
2个回答
展开全部
∵图象与x轴有两个交点,
∴方程ax2+bx+c=0有两个不相等的实数根,
∴b2-4ac>0,
∴4ac-b2<0,
∴①正确;
∵对称轴是直线x=-1,和x轴的一个交点在点(0,0)和点(1,0)之间,
∴抛物线和x轴的另一个交点在(-3,0)和(-2,0)之间,
∴把(-2,0)代入抛物线得:y=4a-2b+c>0,
∴4a+c>2b,
∴②错误;
∵抛物线的对称轴是直线x=-1,
∴y=a-b+c的值最大,
即把(m,0)(m≠-1)代入得:y=am2+bm+c<a-b+c,
∴am2+bm+b<a,
即m(am+b)+b<a,
∴③正确;
∵把(1,0)代入抛物线得:y=a+b+c<0,
∴2a+2b+2c<0,
∵b=2a,
∴3b+2c<0,
∴④正确;
即正确为①③④,
故选:B.
引用K莫沫159的回答:
∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2-4ac>0,∴4ac-b2<0,∴①正确;∵对称轴是直线x=-1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(-3,0)和(-2,0)之间,∴把(-2,0)代入抛物线得:y=4a-2b+c>0,∴4a+c>2b,∴②错误;∵抛物线的对称轴是直线x=-1,∴y=a-b+c的值最大,即把(m,0)(m≠-1)代入得:y=am2+bm+c<a-b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴③正确;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b+2c<0,∴④正确;即正确为①③④,故选:B.
∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2-4ac>0,∴4ac-b2<0,∴①正确;∵对称轴是直线x=-1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(-3,0)和(-2,0)之间,∴把(-2,0)代入抛物线得:y=4a-2b+c>0,∴4a+c>2b,∴②错误;∵抛物线的对称轴是直线x=-1,∴y=a-b+c的值最大,即把(m,0)(m≠-1)代入得:y=am2+bm+c<a-b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴③正确;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b+2c<0,∴④正确;即正确为①③④,故选:B.
展开全部
2应该是对的,可以转化为4a-2b+c小于0所以,当x为-2是,y小于0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询