设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使
设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使得f(ξ)=f(ξ+a).解答:设F(x)=f(x)-f(x+a)F(0...
设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使得f(ξ)=f(ξ+a).
解答:设F(x)=f(x)-f(x+a)
F(0)=f(0)-f(a)
F(a)=f(a)-f(2a)
F(0)* F(a)<0
所以 由介值定理,存在F(ξ)=f(ξ)- f(ξ+a)=0
所以,f(ξ)=f(ξ+a)
我想请问下,这里如果f0=fa那不就不成立了吗? 展开
解答:设F(x)=f(x)-f(x+a)
F(0)=f(0)-f(a)
F(a)=f(a)-f(2a)
F(0)* F(a)<0
所以 由介值定理,存在F(ξ)=f(ξ)- f(ξ+a)=0
所以,f(ξ)=f(ξ+a)
我想请问下,这里如果f0=fa那不就不成立了吗? 展开
3个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询