![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
隐函数求偏导
隐函数求偏导我觉得他做的不对?明明应该像我右边写的那样?或者像我画框框里那样?他这样都笼统的定位一个东西的导数对么?...
隐函数求偏导我觉得他做的不对?明明应该像我右边写的那样?或者像我画框框里那样?他这样都笼统的定位一个东西的导数对么?
展开
1个回答
展开全部
解:
你的求法是错误的!
原因:
对于函数求偏微分,要符合链式法则,于是:
形如:z=f(x,y)对x求偏导:
∂z/∂x
= (∂f/∂x)·(dx/dx)+(∂f/∂y)·(dy/dx)
=(∂f/∂x) + 0
=∂f/∂x
需要注意的一点是,z=f(x,y)中,公式表达了含有两项自变量为x和y,而题设中:
z=f(x+y+z)自变量为x+y+z,只有复合的一项,因此:
∂z/∂x
= (∂f/∂x)·[d(x+y+z)/dx]
= (∂f/∂x)·[(dx/dx)+(dy/dx)+(∂z/∂x)]
= (∂f/∂x)·[1+(∂z/∂x)]
=f'·[1+(∂z/∂x)]
你的错误时:f(x+y+z)认为自变量有3项!
你对多元函数理解还比较肤浅,需要加深这方面的理解!
你的求法是错误的!
原因:
对于函数求偏微分,要符合链式法则,于是:
形如:z=f(x,y)对x求偏导:
∂z/∂x
= (∂f/∂x)·(dx/dx)+(∂f/∂y)·(dy/dx)
=(∂f/∂x) + 0
=∂f/∂x
需要注意的一点是,z=f(x,y)中,公式表达了含有两项自变量为x和y,而题设中:
z=f(x+y+z)自变量为x+y+z,只有复合的一项,因此:
∂z/∂x
= (∂f/∂x)·[d(x+y+z)/dx]
= (∂f/∂x)·[(dx/dx)+(dy/dx)+(∂z/∂x)]
= (∂f/∂x)·[1+(∂z/∂x)]
=f'·[1+(∂z/∂x)]
你的错误时:f(x+y+z)认为自变量有3项!
你对多元函数理解还比较肤浅,需要加深这方面的理解!
![](https://ecmc.bdimg.com/public03/b4cb859ca634443212c22993b0c87088.png)
2025-02-09 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询