k是一个正奇数,证明 1^k+2^k+...+n^k 能被(n+1)整除

 我来答
玲玲的湖
2016-10-11 · TA获得超过2250个赞
知道小有建树答主
回答量:7261
采纳率:4%
帮助的人:337万
展开全部
证明:设Sn=1^k+2^k+3^k+.. +n^k 反序即:Sn= n^k+(n-1)^k+..2^k+1^k 两式相加:2Sn=2+ (2^k+n^k)+.. (n^k+2^k) k为奇数时,有:a^k+b^k=(a+b)[a^(k-1)-.....+b^(k-1)] 即a^k+b^k能被a+b整除 所以上式中右边从第二项开始每项m^k+(n-m+2)^k都能被m+n-m+2=n+2整除(m为任意数) 即有:2Sn=2+(n+2)P Sn=1+(n+2)P/2 因此各项都为整数,所以Sn 被n+2除余1. 结论成立。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式