KNN算法,k近邻

KNN算法,k近邻两个样本是k近邻的是什么意思(在论文中AandBarek-nearestneighbour是什么意思)... KNN算法,k近邻两个样本是k近邻的是什么意思(在论文中A and B are k-nearest neighbour是什么意思) 展开
 我来答
匿名用户
2017-03-13
展开全部
1' 然后直接看文档copy实例即可。 2,一般均分; 根据k值截取邻居里面前k个 for (var i in this。留一法就是每次只留下一个样本做测试集, k) { for (var i in this; var b = neighbor.i - this; 判断邻居里哪个样本类型多 if(types[',这里是把刚生成的数据结构里的对象传入,'.d.d - this.samples) { /;/ /,所以我们可以判断未知样本类型为红色三角形;/ var c = neighbor; rCount.a,我们这里采用欧式距离.neighbors[i];/ 把所有邻居按距离排序 this.log(err; } }.prototype; } else { this.sortByDistance = function() { this; sIdx++ ){ var sht = bk, e; //,如果k=3;.e - this.push( new Sample(this; var d = neighbor; }): 0 };data; 检验属性是否属于对象自身 if (object, this.random() - 0,诸如决策树归纳;],',有一个蓝色的三正方形。 k倍验证时定义了个方法先把数组打乱随机摆放; rIdx 有两种类别 1和-1 var types = { ',它被广泛应用于模式识别;: 0.push(sample); var j = neighbor; } /types['.type) continue,而训练我们识别的过程就对应于泛化这一概念; 猜测预测样本类型 this..type = '.f; 初始化未知样本的邻居 this.sqrt(a*a + b*b + c*c + d*d + e*e + f*f + g*g + h*h + i*i + j*j + k*k),'.measureDistances = function(a.k).f; 把传过来的对象上的属性克隆到新创建的样本上 for (var key in object) { //.open('。 3;/,最后猜测类型;/.j;/.determineUnknown = function() { for (var i in this.sortByDistance().type = ',cIdx),', '.e.samples; /.add = function(sample) { this;/,我们还是能认得出来它;/.measureDistances(this;/.samples[i];b' 最后分别计算10倍交叉验证和留一法交叉验证的精度;,生成一个新的样本, b。knn基于类比学习.column,不只是颜色这一个标签.g, this, this.h; types[neighbor; 生成邻居集 for (var j in this; 将邻居样本根据与预测样本间距离排序 Sample,贝叶斯分类等都是急切学习法的例子,当然也不能过度调教2333;.neighbors = [].samples = []; 判断被预测样本类别 Sample,过度调教它要把其他手机也认成iphone那就不好了;/,然后再来看上面的理论应该会明白很多;/ node;-1', cCount = sht。惰性学习法(lazy learner)正好与其相反;/,'e', d; for(var cIdx = 0,是不是某些同学想大喊一声.sheets[sIdx].prototype.count,调用未知样本原型上的方法来计算邻居到它的距离;)。最后是样本集的原型上定义一个方法; return; helper函数 将数组里的元素随机摆放 function ruffle(array) { array;/, rCount = sht,把所有邻居按距离排序.a;} var shtCount = bk,并对新的输入给出合理的判断.neighbors.samples[i].neighbors) { var neighbor = this,直到给定一个待接受分类的新元组之后.samples[j],使用truetype和type来预测样本类型和对比判断是否分类成功;k'/ 计算欧式距离 neighbor; }.distance - b, this,才开始根据训练元组构建分类模型;/ 将文件中的数据映射到样本的属性var map = [' } } } 再定义一个样本集的构造函数 /。可以用这个最简单的分类算法来入高大上的ML的门,我们选取距离其最近的k个几何图形源于数据挖掘的一个作业,学习后的模型已经就绪。这k个训练元祖就是待预测元组的k个最近邻.sort(function (a;]>,样本有1和-1两种类型, g.push(item); /.prototype。主要是因为我们在脑海像给这个苹果贴了很多标签一样。 / } 然后我们会在样本的原型上定义很多方法.k - this; 如果碰到未知样本 跳过 if ( ;, 这里用Node,'h' }) } 剩余测试代码好写.k),需要我们好好调教它; var k = neighbor;/ }).samples[i], j.k,多次被教后再看到的时候我们自己就能认出来这些事物了;/,其它样本做训练集,找出最接近未知元组的k个训练元组,'/.f - this; 计算所有邻居与预测样本的距离 this,所以称为急切学习法! this。 /.g;g'/.samples[i].b;,我们可以看到有两个红色的三角形.row; / SampleSet管理所有样本 参数k表示KNN中的kvar SampleSet = function(k) { this; } } 注意到我这里的数据有a-k共11个属性,训练集大的话会很慢; } } }.distance。缺点就是进行分类时要扫描所有训练样本得到距离; Sample表示一个样本 var Sample = function (object) { /,最后的平均测试结果可以衡量模型的性能.cell(rIdx, b) { return a.sort(function (a。本文的knn算法就是一种惰性学习法。 / for(var rIdx = 0.j - this,惰性学习法在分类进行时做更多的工作;,可能还有苹果的形状大小等等, c,包含未知类型样本 SampleSet。这些标签让我们看到苹果的时候不会误认为是橘子;/ for(var sIdx = 0.c;node-xlrd'.b, h; } data;1'.samples) { /,由于红色三角形所占比例高,这里的距离就是我们根据样本的特征所计算出来的数值, function(err。那么求距离其实不同情况适合不同的方法。取一份作为测试样本,在此之前只是存储着训练元组。这个过程重复K次; var a = neighbor, err! this.neighbors.message),这k个几何图形就是未知类型样本的邻居.count;.slice(0;i'.c - this; shtCount。 K倍交叉验证将所有样本分成K份;a'.prototype,',剩余K-1份作为训练样本;-1',这里的k即是knn中的k; cIdx++){ item[map[cIdx]] = sht; sIdx <,搜索模式空间,但蠢计算机就不知道怎么做了; }。 /,但却能在很多关键的地方发挥作用并且效果非常好.h - this,绿色的圆代表未知样本。 k-nearest-neighbor-classifier 还是先严谨的介绍下; var e = neighbor,这样每个样本都可以用这些方法.k = k; 读取文件 xls。所以特征就是提取对象的信息.samples[i];/ var g = neighbor; 如果发现没有类型的样本 if ( ,把数据解析后插入到自己的数据结构里;! 还是来通俗的解释下。综上所述knn分类的关键点就是k的选取和距离的计算.samples[i].b - this。扩展到一般情况时,将未知的新元组与训练元组进行对比; 等文件读取完毕后 执行测试 run().g - this.distance = Math; var h = neighbor.prototype,这里就不贴了. 总结 knn算法非常简单;/.5, this.d, this;d'.neighbors.speak Chinese,即可预测样本类型,并生成他们的邻居集; 然后定义一个构造函数Sample表示一个样本,这个红的是苹果等等。 /.xls', k)) { var neighbor = this; this, this.neighbors[i];1'j'.c; var i = neighbor;/ this; var f = neighbor.hasOwnProperty(key)) { this[key] = object[key].samples[j]) ),这是小鸭子。测试结果为用余弦距离等计算方式可能精度会更高, b) { return Math;c'。其实这些标签就对应于机器学习中的特征这一重要概念.guessType(this。 var data = [];/, i.e,bk){ if(err) {console。 balabala了这么多。小时候妈妈会指着各种各样的东西教我们,这对于我们人来说非常简单,泛化就是学习到隐含在这些特征背后的规律, this;;]){ this; } /.sheet; /。急切学习法(eager learner)是在接受待分类的新元组之前就构造了分类模型; rIdx++){ var item = {};/.name,再找出距离未知类型样本最近的K个样本.a - this.js用来读取xls文件的包 var xls = require('-1'.h; / / 将样本加入样本数组 SampleSet. 实现我的数据是一个xls文件。一台iphone戴了一个壳或者屏幕上有一道划痕,那么我去npm搜了一下选了一个叫node-xlrd的包直接拿来用,该方法可以在整个样本集里寻找未知类型的样本; 计算样本间距离 采用欧式距离 Sample; } } /.type) { / 构建总样本数组.guessType = function(k) { /,其实这就叫过度泛化,'f',那我们哼哧哼哧的看着应答着,', f,所以称为惰性学习法.trueType] += 1; cIdx <,会有点小小的成就感; cCount。我们可以看上图.js技术来实现一下这个机器学习中最简单的算法之一k-nearest-neighbor算法(k最近邻分类法),急着对未知的元组进行分类.count.i
晓网科技
2024-10-17 广告
ZigBee作为一项新型的无线通信技术,其具有传统网络通信技术所不可比拟的优势,既能够实现近距离操作,又可降低能源的消耗。又如,相较于蓝牙等无线通信技术,ZigBee无线通信技术可有效降低使用成本, 即便数据处理的速率并不高,然而,值得肯定... 点击进入详情页
本回答由晓网科技提供
爱土豆也Cb
2017-03-13 · TA获得超过256个赞
知道小有建树答主
回答量:1267
采纳率:0%
帮助的人:450万
展开全部
K最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式