勾股定理的定义是什么

 我来答
穆子澈想我1997
2019-03-28 · TA获得超过44.2万个赞
知道小有建树答主
回答量:672
采纳率:100%
帮助的人:35.6万
展开全部

勾股定理是指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

扩展资料

勾股定理的发展史

中国

公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。

公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。 

在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。

外国

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。 

公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。

1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。

1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。

参考资料来源:百度百科—勾股定理

百度网友ed63393
高粉答主

2019-02-12 · 关注我不会让你失望
知道小有建树答主
回答量:52
采纳率:100%
帮助的人:2.5万
展开全部

勾股定理定义为:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

扩展资料:

勾股定理的意义:

1.勾股定理的证明是论证几何的发端;

2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

参考资料来源:百度百科-勾股定理

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jiahaoxie

2016-12-16 · TA获得超过13.8万个赞
知道大有可为答主
回答量:6.6万
采纳率:87%
帮助的人:1.6亿
展开全部

勾股定理(英语:Pythagorean theorem)又称商高定理、毕达哥拉斯定理、毕氏定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等於斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等於第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。

勾股定理是人类早期发现并证明的重要数学定理之一。

据《周髀算经》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,「以为句广三,股修四,径隅五」。其二,「既方其外,半之一矩,环而共盤,得成三四五。两矩共长二十有五,是谓积矩。」首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等於斜边平方的判定原则。其判定方法後世不明其法而被忽略。

此外,《周髀算经》中明确记载了周公後人陈子叙述的勾股定理公式:「若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日」。

赵爽在《周髀算经注》中将勾股定理表述为「勾股各自乘,并之,为弦实。开方除之,即弦」。

古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(18541,12709,13500)。

古希腊发现勾股定理的是毕达哥拉斯,所以勾股定理又称毕达哥拉斯定理。据说毕达哥拉斯证明了这个定理後,即斩了百头牛作庆祝(百牛大祭),因此又称百牛定理。但这个说法显然是以讹传讹,众所周知毕达哥拉斯主义者在古代以素食闻名。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
华全动力集团
2018-06-26 · 中国发电机组行业第一梯队领跑者
华全动力集团
华全发电设备覆盖1-3000kw功率范围的柴油、汽油、燃气发电机组,此外还包括水泵机组、移动升降灯等。(玉柴、潍柴、康明斯、沃尔沃、珀金斯等)已广泛应用于工农业生产、工程施工、商业地产。
向TA提问
展开全部
  勾股定理的定义是怎样的,以下做出介绍:
  勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
  勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。
  勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
徐天来11
高粉答主

2016-12-16 · 关注我不会让你失望
知道大有可为答主
回答量:2.5万
采纳率:89%
帮助的人:3683万
展开全部
勾股定理的定义是什么
勾股定理这个东西真的是非常简单的,你以后会学到函数,你就会发现的.关键是你要活用a^2+b^2=c^2这个定理.难题并不是它出的难,而是它考点多,如果你能将它逐个击破,那么难度就会破解了.我相信你会发现,解题的时候直接套公式就可以了.一般考试这么考,已知△ABC中∠C=90°,BC=5,AC=12,求AB的值.非常简单,你只要根据勾股定理就可以直接求出了:∵∠C的对边是AB,所以AB是斜边.∵△ABC中,∠C=90°∴AB^2=BC^2+AC^2∴AB=13还有,勾股定理考试的时候会用来判定直角三角形.你要记住,人家问你:当一个三角形满足a^2+b^2=c^2是什么三角形?勾股定理的逆定理可以求出:直角三角形.我还可以给出出一个变式题:一个三角形的三边满足(a-3)^2+(b-4)^2+(c-5)^2=0,这是一个什么三角形?很容易解出是直角三角形.还有一个勾股数的概念,只要满足a^2+b^2=c^2的正整数就是勾股数,注意是正整数,如果是零点几的数字,它们虽然可以构成直角三角形,但不是勾股数.判断勾股数是有技巧的,譬如说人家问你15,20,25是不是勾股数,你可以用巧妙的方法算:15=5*3,20=5*4,25=5*5,∵3,4,5是勾股数,所以15,20,25是勾股数.还有分类讨论.人家问你,一个直角三角形中,一条边长为12,另一条边长为5,求第三条边.这涉及到分类讨论的思想.一般同学肯定直接会求出第三条边为13,但如果仔细算算,不难发现,还有一解,把12当做斜边,5当做一条直角边,则第三边=根号119老师帮你把各种题型归纳了一下,懂了吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(11)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式