请问 (1+x)^n的泰勒级数是什么? 请写出∑的级数式子。

 我来答
轮看殊O
高粉答主

2021-09-20 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:723万
展开全部

令f(x)=ln(1+x),则:

f(x)的k阶导数为fk(x)=(k-1)!(-1)^(k+1)/(1+x)^k; (k-1)的阶乘,乘以-1的k+1次方,除以(1+x)的k次方。

f(x)=f(x0)+∑fk(x0)(x-x0)^k/k!(k=1,2,3……)

x0可取f(x)定义域内的任意数,根据需要选择.如x0=0,则上式为f(x)在x=0处的泰勒展开式。

求极限基本方法有:



1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。



2、无穷大根式减去无穷大根式时,分子有理化。




3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。

匿名用户
2017-10-13
展开全部
令f(x)=ln(1+x),则
f(x)的k阶导数为fk(x)=(k-1)!(-1)^(k+1)/(1+x)^k; (k-1)的阶乘,乘以-1的k+1次方,除以(1+x)的k次方
f(x)=f(x0)+∑fk(x0)(x-x0)^k/k!(k=1,2,3……)
x0可取f(x)定义域内的任意数,根据需要选择.如x0=0,则上式为f(x)在x=0处的泰勒展开式.
fk(x0)可由前面的式子求得.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式