求极限这题怎么做?答案是2
展开全部
lim(x->0+) ln[1+ e^(2/x)] / ln[1+ e^(1/x)] ; (∞/∞), 分子,分母分别求导
=lim(x->0+) {-(2/x^2).e^(2/x)/[1+ e^(2/x)] }/ {-(1/x^2).e^(1/x)/[1+ e^(1/x)] }
=lim(x->0+) 2.e^(1/x) . [1+ e^(1/x)]/ [1+ e^(2/x)]
分子,分母同时除以 e^(2/x)
=lim(x->0+) 2 [1/e^(1/x) + 1]/ [1/e^(2/x) + 1]
=lim(x->0+) 2 [0 + 1]/ [0 + 1]
=2
=lim(x->0+) {-(2/x^2).e^(2/x)/[1+ e^(2/x)] }/ {-(1/x^2).e^(1/x)/[1+ e^(1/x)] }
=lim(x->0+) 2.e^(1/x) . [1+ e^(1/x)]/ [1+ e^(2/x)]
分子,分母同时除以 e^(2/x)
=lim(x->0+) 2 [1/e^(1/x) + 1]/ [1/e^(2/x) + 1]
=lim(x->0+) 2 [0 + 1]/ [0 + 1]
=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询