1个回答
展开全部
在数学中,对数是对求幂的逆运算,正如除法是乘法的逆向法(逆运算),反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
对数符号log出自拉丁文logarithm,最早由意大利数学家卡瓦列里(Cavalieri)所使用。20世纪初,形成了对数的现代表示。为了使用方便,人们逐渐把以10为底的常用对数及以无理数e为底的自然对数分别记作lgN和lnN。
零没有对数。
在实数范围内,负数无对数。
以a为底数,3的对数小于1,log3(3)=1,而且log3(x)函数是单调递增的,所以x<3,
又log3(x)定义域为x>0,所以解集为0<x<3。
希望我能帮助你解疑释惑。
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
对数符号log出自拉丁文logarithm,最早由意大利数学家卡瓦列里(Cavalieri)所使用。20世纪初,形成了对数的现代表示。为了使用方便,人们逐渐把以10为底的常用对数及以无理数e为底的自然对数分别记作lgN和lnN。
零没有对数。
在实数范围内,负数无对数。
以a为底数,3的对数小于1,log3(3)=1,而且log3(x)函数是单调递增的,所以x<3,
又log3(x)定义域为x>0,所以解集为0<x<3。
希望我能帮助你解疑释惑。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询