求公式和推导过程
求1+1/2+1/3+1/4+1/5+.....+1/N的公式还有1^3+2^3+3^3+.....+N^3...
求1+1/2+1/3+1/4+1/5+.....+1/N的公式 还有1^3+2^3+3^3+.....+N^3
展开
1个回答
展开全部
1^3
+
2^3
+3^3
+
……+
n^3
=
[n(n+1)/2]^2
1734年,欧拉在一篇文章中给出了用对数函数求(5.10)
式的有限多项和的方法是
1+1/2十1/3+…十1/4+1/n=ln(n+1)+c
其中c就是著名的欧拉常数--继兀和e之后最重要的常数。
1740年,欧拉发现c的值依赖于72;但是,当咒很大的
时候,恕的值并不怎么影响计算的结果。也就是他发现了
分别相加、化简,并且应用对数的性质,就得到
Ln(1+n)/2<1+1/2+1/3+1/4+1/5…1/n
<ln,z(5.13)
把(5.13)式两边分别加上1一lnn,就得到
1+ln(1+n)/2n<1+1/2+1/3+1/4+1/5…1/n一lnn<1
(5.14)
设c=
1+1/2+1/3+1/4+1/5…1/n-lnn,从Cn+1,一Cn=1/(1+n)
+
1n[1+1/(n+1))>0,就知道Cn+1,一Cn即Cn是单调增大的。
又由(5.14)式知道1+ln1/2<1,即|Cn|有界,所
以序列|Cn|有极限。
设这个极限是c,那么c=lin
(n→∞)
[(1+1/2+1/3+1/4+1/5…1/n)一lnn]
或c=lin
(n→∞)[[∑(k=0,n)1/k-lnn],这就证明了(5.11)式,而
且证明了其中1一ln2<C<1,即1-0.693
15<C<1或
0.306
85<C<1。
接下来就是计算c即y的数值及研究它的性质。
1878年,我们“见过面”的、海王星发现者之一的英国
亚当斯(1819~1892),’用他编制的260位对数表,算出了小
数点后260位y值,其中前6位是:0.577
215。
1974年,比尔(w.A.P~yer)和华特曼(M.S.Waterman)用
电子计算机把y值算到小数点后7000位,发表在Math.
Comp.28(1974)上
+
2^3
+3^3
+
……+
n^3
=
[n(n+1)/2]^2
1734年,欧拉在一篇文章中给出了用对数函数求(5.10)
式的有限多项和的方法是
1+1/2十1/3+…十1/4+1/n=ln(n+1)+c
其中c就是著名的欧拉常数--继兀和e之后最重要的常数。
1740年,欧拉发现c的值依赖于72;但是,当咒很大的
时候,恕的值并不怎么影响计算的结果。也就是他发现了
分别相加、化简,并且应用对数的性质,就得到
Ln(1+n)/2<1+1/2+1/3+1/4+1/5…1/n
<ln,z(5.13)
把(5.13)式两边分别加上1一lnn,就得到
1+ln(1+n)/2n<1+1/2+1/3+1/4+1/5…1/n一lnn<1
(5.14)
设c=
1+1/2+1/3+1/4+1/5…1/n-lnn,从Cn+1,一Cn=1/(1+n)
+
1n[1+1/(n+1))>0,就知道Cn+1,一Cn即Cn是单调增大的。
又由(5.14)式知道1+ln1/2<1,即|Cn|有界,所
以序列|Cn|有极限。
设这个极限是c,那么c=lin
(n→∞)
[(1+1/2+1/3+1/4+1/5…1/n)一lnn]
或c=lin
(n→∞)[[∑(k=0,n)1/k-lnn],这就证明了(5.11)式,而
且证明了其中1一ln2<C<1,即1-0.693
15<C<1或
0.306
85<C<1。
接下来就是计算c即y的数值及研究它的性质。
1878年,我们“见过面”的、海王星发现者之一的英国
亚当斯(1819~1892),’用他编制的260位对数表,算出了小
数点后260位y值,其中前6位是:0.577
215。
1974年,比尔(w.A.P~yer)和华特曼(M.S.Waterman)用
电子计算机把y值算到小数点后7000位,发表在Math.
Comp.28(1974)上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询