已知数列{a n }满足: a 1 =1, a n+1 = 1 2 a n +n,n为奇数
已知数列{an}满足:a1=1,an+1=12an+n,n为奇数an-2n,n为偶数(I)求a2,a3;(II)设bn=a2n-2,n∈N*,求证:数列{bn}是等比数列...
已知数列{a n }满足: a 1 =1, a n+1 = 1 2 a n +n,n为奇数 a n -2n,n为偶数 (I)求a 2 ,a 3 ; (II)设 b n = a 2n -2,n∈ N * ,求证:数列{b n }是等比数列,并求其通项公式; (Ⅲ)求数列{a n }前20项中所有奇数项的和.
展开
展开全部
(Ⅰ)令n=1,得a
2
=
1
2
a
1
+1=
3
2
,令n=2,得a
3
=a
2
-4=-
5
2
.
(II)b
1
=a
2
-2=-
1
2
,且
b
n+1
b
n
=
a
2n+2
-2
a
2n
-2
=
1
2
a
2n+1
+(2n+1)-2
a
2n
-2
=
1
2
(a
2n
-2×2n)+2n-1
a
2n
-2
=
1
2
,是一个与n无关的常数.
所以数列{b
n
}是等比数列,其通项公式b
n
=-
(
1
2
)
n
(Ⅲ)由(II)可得a
2n
=2+b
n
.
数列{a
n
}前20项中所有奇数项的和S=a
1
+a
3
+a
5
+…+a
19
=a
1
+
1
2
(
a
2
-2×1)
+
1
2
(
a
4
-2×2)
+…+
1
2
(
a
18
-2×18)
=1-(1+2+4+…18)+
1
2
(a
2
+a
4
+…a
18
)
=-90+
1
2
(2+b
1
+2+b
2
+…2+b
9
)=-90+
1
2
(18+
-
1
2
(1-
1
2
9
)
1-
1
2
)=-90+9-
1
2
+
1
2
10
=
1
2
10
-
163
2
2
=
1
2
a
1
+1=
3
2
,令n=2,得a
3
=a
2
-4=-
5
2
.
(II)b
1
=a
2
-2=-
1
2
,且
b
n+1
b
n
=
a
2n+2
-2
a
2n
-2
=
1
2
a
2n+1
+(2n+1)-2
a
2n
-2
=
1
2
(a
2n
-2×2n)+2n-1
a
2n
-2
=
1
2
,是一个与n无关的常数.
所以数列{b
n
}是等比数列,其通项公式b
n
=-
(
1
2
)
n
(Ⅲ)由(II)可得a
2n
=2+b
n
.
数列{a
n
}前20项中所有奇数项的和S=a
1
+a
3
+a
5
+…+a
19
=a
1
+
1
2
(
a
2
-2×1)
+
1
2
(
a
4
-2×2)
+…+
1
2
(
a
18
-2×18)
=1-(1+2+4+…18)+
1
2
(a
2
+a
4
+…a
18
)
=-90+
1
2
(2+b
1
+2+b
2
+…2+b
9
)=-90+
1
2
(18+
-
1
2
(1-
1
2
9
)
1-
1
2
)=-90+9-
1
2
+
1
2
10
=
1
2
10
-
163
2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询