已知数列{an}的通项公式为an=3n-1,求此数列的前7项的和。
展开全部
解:(1)数列{an}的前n项的和sn
=
3/[2(3n
–
1)]
;
1)当n
=
1时,a1
=
s1
=
3/[2*(3
–
1)]
=
3/4
;
2)当n
≥
2,n∈n*时,an
=
sn
–
sn-1
=
3/[2(3n
–
1)]
–
3/{2[3(n
–
1)
–
1]}
=
3/[2(3n
–
1)]
–
3/[2(3n
–
4)]
=
(3/2)[1/(3n
–
1)
–
1/(3n
–
4)]
=
(3/2)*[(3n
–
4)
–
(3n
–
1)]/[(3n
–
1)(3n
–
4)]
=
(-9/2)/[(3n
–
1)(3n
–
4)]
=
-9/[2(3n
–
1)(3n
–
4)]
;
当n
=
1时,an
=
-9/[2*2*(-1)]
=
9/4
≠
3/4,所以a1
不符合上式;
综上所述,数列{an}的通项公式为:
an
=
{3/4
,当n
=
1时;
....{-9/[2(3n
–
1)(3n
–
4)],当n
≥
2,n∈n*时。
=
3/[2(3n
–
1)]
;
1)当n
=
1时,a1
=
s1
=
3/[2*(3
–
1)]
=
3/4
;
2)当n
≥
2,n∈n*时,an
=
sn
–
sn-1
=
3/[2(3n
–
1)]
–
3/{2[3(n
–
1)
–
1]}
=
3/[2(3n
–
1)]
–
3/[2(3n
–
4)]
=
(3/2)[1/(3n
–
1)
–
1/(3n
–
4)]
=
(3/2)*[(3n
–
4)
–
(3n
–
1)]/[(3n
–
1)(3n
–
4)]
=
(-9/2)/[(3n
–
1)(3n
–
4)]
=
-9/[2(3n
–
1)(3n
–
4)]
;
当n
=
1时,an
=
-9/[2*2*(-1)]
=
9/4
≠
3/4,所以a1
不符合上式;
综上所述,数列{an}的通项公式为:
an
=
{3/4
,当n
=
1时;
....{-9/[2(3n
–
1)(3n
–
4)],当n
≥
2,n∈n*时。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询