求不定积分∫(lnx)^3/x^2 要自己算的 不要复制的
展开全部
∫(lnx)^3/x^2dx
=∫(lnx)^3d(-1/x)
=-(lnx)^3/x+∫3(lnx)^2(1/x)(1/x)dx
=-(lnx)^3/x-3∫(lnx)^2d(1/x)
=-(lnx)^3/x-3(lnx)^2/x+3∫2lnx(1/x)(1/x)dx
=-(lnx)^3/x-3(lnx)^2/x-6∫lnxd(1/x)
=-(lnx)^3/x-3(lnx)^2/x-6lnx/x+6∫1/x^2dx
=-[(lnx)^3+3(lnx)^2+6lnx+6]/x
=∫(lnx)^3d(-1/x)
=-(lnx)^3/x+∫3(lnx)^2(1/x)(1/x)dx
=-(lnx)^3/x-3∫(lnx)^2d(1/x)
=-(lnx)^3/x-3(lnx)^2/x+3∫2lnx(1/x)(1/x)dx
=-(lnx)^3/x-3(lnx)^2/x-6∫lnxd(1/x)
=-(lnx)^3/x-3(lnx)^2/x-6lnx/x+6∫1/x^2dx
=-[(lnx)^3+3(lnx)^2+6lnx+6]/x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询