1/((1-x)^2)展开为x的幂级数,
1个回答
展开全部
f(x) = 1/((1-x)^2),在x=0进行泰勒展开?
f(0) = 1,
f'(x) = 2/((1-x)^3),so f'(0) = 2,
f''(x) = 2*3/((1-x)^4),so f''(0) = 6,
f(x)的n阶导数= (n+1)!/((1-x)^(n+2)),so f(x)的n阶导数在0点取值 = (n+1)!,
f(x) = Sigma[(n+1)!*(x^n)],
f(0) = 1,
f'(x) = 2/((1-x)^3),so f'(0) = 2,
f''(x) = 2*3/((1-x)^4),so f''(0) = 6,
f(x)的n阶导数= (n+1)!/((1-x)^(n+2)),so f(x)的n阶导数在0点取值 = (n+1)!,
f(x) = Sigma[(n+1)!*(x^n)],
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询