数列极限的 ε—n定义是什么?
展开全部
数列极限的ε-N定义:设a是一个常数,{an}是一个数列,如果存在一个正数N,当n>N时,任意给一个正数ε,都有|an-a|N=100时,ε=0.001,/an-a/=/1/n-0/=/1/n/=1/n。
数列极限的ε-N定义是;若对任给的正数ε,总存在正整数N>0,使得当n>N时,有|An-a|<ε,则说数列{An}收敛于a,a称为数列{An}的极限,而你说的自然数列在这里就是An=n,接着给出推论;任给ε>0,若在某U(a;ε)之外数列{An}中的项至多有有限个,则称数列{An}收敛于极限a。
数列极限
数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询