什么数据适合因子分析?
定量数据适合因子分析。把一些信息重叠、具有错综复杂关系的变量归结为少数几个不相关的综合因子的一种多元统计分析。
因子分析法是指从研究指标相关矩阵内部的依赖关系出发,把一些信息重叠、具有错综复杂关系的变量归结为少数几个不相关的综合因子的一种多元统计分析方法。
处理因子分析的方法
提取因子的个数是一个综合选择的过程。默认是按特征根大于1作为因子提取的标准。
特征根不是唯一的判断标准。除此特征根,还可以通过累积方差贡献率、碎石图等指标综合判断。如果分析前已经有了预期的维度划分,也可以在分析时主动设定提取因子个数,再根据上面的指标进行调整。
因子与对应项关系不一致,一般有三种情况:第一种是一个分析项对应着多个因子;导致题项无法归类;第二种是题项与对应因子的关系出现严重偏差;第三种是题项在各个因子下的载荷系数值或共同度都非常低。
2024-11-30 广告
2023-12-12 · 百度认证:SPSSAU官方账号,优质教育领域创作者
因子分析(探索性因子分析)用于探索分析项(定量数据)应该分成几个因子(变量),比如20个量表题项应该分成几个方面较为合适;用户可自行设置因子个数,如果不设置,系统会以特征根值大于1作为判定标准设定因子个数。在“进阶方法”模块中选择“因子”方法,将分析项定量拖拽到右侧分析框内,点击“开始分析”即可。
补充说明:如果有预期想提取的因子个数,可以主动设置输出的因子个数勾选“因子得分”与“综合得分”会在左侧分析框生成新的变量,标题如CompScore*****(综合得分)、FactorScore*****(因子得分)。因子得分可用于进一步分析,比如聚类分析,回归分析使用等;综合得分可用于对比排名等。
因子个数:多数情况下,我们在分析时已经带着主观预期,希望题项如何归类,此时可以直接设置对应的因子个数。
进行结构效度的正式分析前,第一步需要通过KMO和巴特利特检验进行测量问卷量表进而决定是否适合进行因子分析,KMO值是用来判断所选取变量在因素分析中的可接受程度,考察变量之间相关关系。
一般进行因子分析需要kmo值大于0.6即可。处理之外还需要关注巴特利特检验。巴特利特检验原理上是检验各变量是否独立,确定因素的相关性,如果模型显著(对应的p值小于0.05)说明适合因子分析。