函数y=f(|x-a|)的图像关于什么对称?
1个回答
展开全部
关于直线x=a对称
原因如下
任取两点a+t和a-t(t为任意实数)
则f(a+t)=f(|a+t-a|)=f(|t|)
而f(a-t)=f(|a-t-a|)=f(|-t|)=f(|t|)
即f(a+t)=f(a-t)对任意t都成立,即函数图象关于直线x=a对称
原因如下
任取两点a+t和a-t(t为任意实数)
则f(a+t)=f(|a+t-a|)=f(|t|)
而f(a-t)=f(|a-t-a|)=f(|-t|)=f(|t|)
即f(a+t)=f(a-t)对任意t都成立,即函数图象关于直线x=a对称
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-08-07 广告
2024-08-07 广告
在东莞市大凡光学科技有限公司,我们利用Halcon软件处理机器视觉项目时,会用到自定义标定板以满足特定需求。Halcon支持用户根据实际应用场景自定义标定板形状与标记点。这不仅可以灵活应对不同工作环境,还能提高标定精度。通过调整圆点数量、间...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询