级数收敛的判别方法

 我来答
小铅笔大梦想
2022-11-25 · TA获得超过351个赞
知道小有建树答主
回答量:2159
采纳率:100%
帮助的人:34.5万
展开全部

级数收敛的判别方法如下:

一、判定正项级数的敛散性。

1.先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;如果趋于零,则考虑其它方法。

2.再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数。

3.用比值判别法或根值判别法进行判别。

4.再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等。

二、判定交错级数的敛散性。

1.利用莱布尼茨判别法进行分析判定。

2.利用绝对级数与原级数之间的关系进行判定。

3.一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散。

4.有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定。

三、求幂级数的收敛半径、收敛区间和收敛域。

1.若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域。

2.对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式