设随机变量X ,Y分别服从(0-1)分布,证明:X,Y相互独立等价于X,Y不相关

 我来答
科创17
2022-09-26 · TA获得超过5918个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:177万
展开全部
设 X,Y的分布律分别为
X 0 1 Y 0 1
1-p p 1-q q
(1)X,Y独立,那么他们一定不相关(这是书上的结论,只要独立就一定不相关)
(2)X,Y不相关,则COV(X,Y)=0,即E(XY)=E(X)E(Y)
又因为E(X)=p,E(Y)=q
所以E(XY)=pq
由于X,Y都是0-1分布,所以
XY的分布律 0 1
1-pq pq
只能得出P(X=1,Y=1)=pq=P(X=1)P(Y=1)
不能得出其余三个等式成立,比如不能得出P(X=1,Y=0)=P(X=1)P(Y=0)
注:只有二维正态分布的两个随机变量独立和不相关是等价的.满意望采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式