长度为1的平面向量OA和OB夹角120,点C在以O为圆心的圆弧AB上变动

 我来答
户如乐9318
2022-07-17 · TA获得超过6676个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:141万
展开全部
给定两个长度为1的平面向量OA和OB,它们的夹角120°,点C在以O为圆心的
圆弧AB上变动,若向量OC=x向量OA+y向量OB,求x+y的最大值
由已知,|OA|=|OB|=|OC|=1 ,且 OA*OB=cos120= -1/2 ,
因此由已知得 OC^2=x^2+y^2+2xy*OA*OB ,
即 x^2+y^2-xy=1 ,
所以 (x+y)^2-3xy=1 ,
由于 xy<=(x+y)^2/4 ,
则 (x+y)^2-1=3xy<=3/4*(x+y)^2 ,
解得 x+y<=2 ,
即当 x=y=1 时,x+y 最大值为 2 .
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式