如何判断级数√(n+2)-2√(n+1)+√n的收敛性? (其中√为开二次方根)
2个回答
展开全部
an=√(n+2)-2√(n+1)+√n=[√(n+2)-√(n+1)]-[√(n+1)-√n]=(分子有理化)1/[√(n+2)+√(n+1)]-1/[√(n+1)+√n].可令bn=1/[√(n+1)+√n].===>an=b(n+1)-bn.(n=1,2,3,...).===>a1=b2-b1,a2=b3-b2,a3=b4-b3,...an=b(n+1)-bn.===>∑an=b(n+1)-b1,显然该级数收敛于-b1=1-√2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询