线性代数中基础解系是什么?

 我来答
轮看殊O
高粉答主

2023-01-03 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:723万
展开全部

线性方程组的解集合的极大线性无关组就是这个方程组的基础解系。先求解方程组 解出所有解向量,然后求出其极大线性无关组就好。

一般求基础解系先把系数矩阵进行初等变换成下三角矩阵,然后得出秩,确定自由变量,得到基础解系,基础解系是相对于齐次(等号右边为0)的.

例如:x1+x2+x3+7x4=2,x1+2x2+x3+2x4=3,5x1+8x2+5x3+20x4=13,2x1+5x2+2x3-x4=7,其增广矩阵为

1 1 1 7 2

1 2 1 2 3

5 8 5 20 13

2 5 2 -1 7

通过初等变换为:

1 1 1 7 2

0 1 0 -5 1

0 0 0 0 0

0 0 0 0 0

秩为2,未知数个数为4,自由变量个数为4-2=2

设自由变量为x3、x4,取(x3,x4)=(1,0)和(0,1)代入方程组(取最终变换得到的比较简单)可得:(x1,x2)=(-1,0)和(-12,5)

于是基础解系的基:(-1,0,1,0)T和(-12,5,0,1)T.

扩展资料

线性代数通解和基础解系的区别如下:

1、定义不同,对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解。基础解系是线性无关的,简单的理解就是能够用它的线性组合表示出该方程组的任意一组解,是针对有无数多组解的方程而言的。

2、求法不同,基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解系之间必定对应着某种线性关系。对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

上海华然企业咨询
2024-10-30 广告
在上海华然企业咨询有限公司,我们深刻理解大模型测试对于确保数据准确性、提升业务效率及优化用户体验的重要性。我们的测试团队专注于对大模型进行全面而细致的评估,涵盖性能稳定性、预测准确性、响应速度及兼容性等多个维度。通过模拟真实业务场景,我们力... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式