
f(x)=3x^2-x∫f(t)dt (上下限0-2) 求f(1)
1个回答
展开全部
把∫f(t)dt设为a(常数,这点很重要)
则原式为f(x)=3x^2-ax
然后两边同时定积分积分上下限分别为0,2
然后就可以变化为∫f(x)dx=a=∫(3x^2-ax)dx
再把后面的定积分展开为a=8-2a 得出a=8/3
再将a带入之前的f(x)=3x^2-ax
最后带入x=1就可以得出1/3了
则原式为f(x)=3x^2-ax
然后两边同时定积分积分上下限分别为0,2
然后就可以变化为∫f(x)dx=a=∫(3x^2-ax)dx
再把后面的定积分展开为a=8-2a 得出a=8/3
再将a带入之前的f(x)=3x^2-ax
最后带入x=1就可以得出1/3了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2023-08-01 广告
计算过程如下:首先,计算4个数值的和:∑Xs = 0.3 + 0.2 + 0.4 + 0.1 = 1然后,计算 lg-1(∑Xs/4):lg-1(∑Xs/4) = lg-1(1/4) = -1其中,lg表示以10为底的对数,即 log10。...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询