∫ e^(2x+e^(2x))dx?
1个回答
展开全部
∫ e^[2x+e^(2x)] dx = ∫ e^(2x) e^[e^(2x)] dx = (1/2) ∫ [2e^(2x)] e^[e^(2x)] dx = (1/2) ∫ e^[e^(2x)] d[e^(2x)] = (1/2) e^[e^(2x)] + C
∫ e^[2x+e^(2x)] dx = ∫ e^(2x) e^[e^(2x)] dx = (1/2) ∫ [2e^(2x)] e^[e^(2x)] dx = (1/2) ∫ e^[e^(2x)] d[e^(2x)] = (1/2) e^[e^(2x)] + C
∫ e^[2x+e^(2x)] dx = ∫ e^(2x) e^[e^(2x)] dx = (1/2) ∫ [2e^(2x)] e^[e^(2x)] dx = (1/2) ∫ e^[e^(2x)] d[e^(2x)] = (1/2) e^[e^(2x)] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询