求定积分∫01xarctanxdx
1个回答
展开全部
【答案】:解:
∫xarctanxdx=∫arctanxd(x²/2)
=(x²/2)arctanx-∫x²/2darctanx
=(x²/2)arctanx-(1/2)∫x²/(1+x²)dx
=(x²/2)arctanx-(1/2)∫[1-1/(1+x²)]dx
=(x²/2)arctanx-(1/2)(x-arctanx)
=(1/2)(x²arctanx+arctanx-x)|(0~1)
=(1/2)(π/4+π/4-1)
=π/4-1/2
∫xarctanxdx=∫arctanxd(x²/2)
=(x²/2)arctanx-∫x²/2darctanx
=(x²/2)arctanx-(1/2)∫x²/(1+x²)dx
=(x²/2)arctanx-(1/2)∫[1-1/(1+x²)]dx
=(x²/2)arctanx-(1/2)(x-arctanx)
=(1/2)(x²arctanx+arctanx-x)|(0~1)
=(1/2)(π/4+π/4-1)
=π/4-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询