已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与双曲线x^2/m^2-y^2/n^2=1(m>0,n>0),其中a^2-b^2=m^2+n^2,

已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与双曲线x^2/m^2-y^2/n^2=1(m>0,n>0),其中a^2-b^2=m^2+n^2,P为它们的公共点... 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与双曲线x^2/m^2-y^2/n^2=1(m>0,n>0),其中a^2-b^2=m^2+n^2,P为它们的公共点。(1)用b,n表示角F1PF2 (2)用b,n表示三角形F1PF2的面积 展开
liu30003000
2009-04-24 · TA获得超过2.2万个赞
知道大有可为答主
回答量:3389
采纳率:0%
帮助的人:0
展开全部
a^2-b^2=m^2+n^2
可知它们有共同的焦点F1、F2
设 a^2-b^2=m^2+n^2=c^2
由定义知:
|PF1|+|PF2|=2a, |PF1|-|PF2|=2m
平方相加得:|PF1|^2+|PF2|^2=2(a^2+m^2)
平方相减得:|PF1||PF2|=a^2-m^2=b^2+n^2
由余弦定理得
cos(角F1PF2)=(|PF1|^2+|PF2|^2-4c^2)/(2|PF1||PF2|)
=(a^2+m^2-2c^2)/(b^2+n^2)
=(b^2-n^2)/(b^2+n^2)
角F1PF2=arccos[(b^2-n^2)/(b^2+n^2)]

2.sin(角F1PF2)=2bn/(b^2+n^2)
S=1/2|PF1||PF2|sin角F1PF2
=2bn

你再仔细核对一下,方法是这样
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式