若sinX+cosY=2分之根号2,则cosX+sinY的范围是?
1个回答
展开全部
设z=cosX+sinY
z^2+(sinX+cosY)^2
=(cos^2x+sin^2y+2cosxsiny)+(sin^2x+cos^2y+2sinxcosy)
=2+2(cosxsiny+sinxcosy)
=2+2sin(x+y)
所以,z^2+1/2=2+2sin(x+y)
z^2=3/2+2sin(x+y)
z^2≤7/2
-√14/2≤z≤√14/2
cosX+sinY的范围是:[-√14/2,√14/2]
z^2+(sinX+cosY)^2
=(cos^2x+sin^2y+2cosxsiny)+(sin^2x+cos^2y+2sinxcosy)
=2+2(cosxsiny+sinxcosy)
=2+2sin(x+y)
所以,z^2+1/2=2+2sin(x+y)
z^2=3/2+2sin(x+y)
z^2≤7/2
-√14/2≤z≤√14/2
cosX+sinY的范围是:[-√14/2,√14/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询