证明一道数学题

证明对任意实数0<x1<x2<1,f‘(x)-[f(x1)-f(x2)]/(x1-x2)=0在(x1,x2)上恒有解... 证明对任意实数0<x1<x2<1,f‘(x)-[f(x1)-f(x2)]/(x1-x2)=0在(x1,x2)上恒有解 展开
baiwuyou
2009-05-03 · TA获得超过1万个赞
知道大有可为答主
回答量:1353
采纳率:0%
帮助的人:1311万
展开全部
F(x)=f(x)-x*[f(x1)-f(x2)]/(x1-x2)
F(x1)=f(x1)-x1f(x1)/(x1-x2)+x1f(x2)/(x1-x2)=[x1f(x2)-x2f(x1)]/(x1-x2)

F(x2)=f(x2)+x2f(x2)/(x1-x2)-x2f(x1)/(x1-x2)=[x1f(x2)-x2f(x1)]/(x1-x2)

F(x1)=F(x2)
存在ξ使F′(ξ)=0
即:f‘(x)-[f(x1)-f(x2)]/(x1-x2)=0在(x1,x2)上恒有解
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式