计算∮l(y^2+2z)ds,其中l为x^2+y^2+z^2=r^2,x+y+z=0的交线

robin_2006
2009-05-09 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8346万
展开全部
由对称性,∮xds=∮yds=∮zds,∮x^2ds=∮y^2ds=∮z^2ds
所以,∮(y^2+2z)ds=1/3×∮(x^2+y^2+z^2+2x+2y+2z)ds=1/3×∮ r^2ds
因为平面x+y+z=0经过球面x^2+y^2+z^2=r^2的球心,所以曲线L是一个圆周,半径为r,所以

∮(y^2+2z)ds=1/3×∮(x^2+y^2+z^2+2x+2y+2z)ds=1/3×∮ r^2ds=1/3×r^2×2πr=2πr^3/3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式