高等数学中什么是二重根

 我来答
帐号已注销
推荐于2019-11-15 · TA获得超过1.9万个赞
知道答主
回答量:39
采纳率:100%
帮助的人:1.7万
展开全部

所谓重根就是指方程(当然是指n次(n>=2))根,但是这些根可能有几个是一样的,就把这几个一样的叫做重根,有几个就叫做几重根。

比如说,方程(x-1)^2=0,这个方程可以写成是(x-1)*(x-1)=0,所以x1=x2=1,就把x=1叫做方程的二重根。

扩展资料:

代数方程,即由多项式组成的方程。有时也泛指由未知数的代数式所组成的方程,包括整式方程、分式方程和根式方程。

例如:5x+2=7,x=1等。

代数,把algebra翻译成代数,就是用字母代替数的意思,继而推广。随着数学的发展,内在涵义又推广为用群结构或各种结构来代替科学现象中的各种关系。也就是说“代数”本质是个“代”字,通过研究各种抽象结构“代替”直接研究科学现象中的各种关系。

单重根,是指在代数方程的解中出现一次的根。

二重根,是指在代数方程的解中出现两次的根。

帐号已注销
推荐于2019-09-25 · TA获得超过8.4万个赞
知道答主
回答量:9
采纳率:0%
帮助的人:3426
展开全部

例如f(x)=(x-1)^2则多项式的根是1就是二重根啊。因为f(x)=(x-1)(x-1)。

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。

扩展资料:

平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。同时,根也指未知方程两边的解。

平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。

参考资料:根 (数学代数学中表示平方根的概念)-百度百科

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
熙苒3421
高粉答主

推荐于2019-08-12 · 关注我不会让你失望
知道答主
回答量:112
采纳率:0%
帮助的人:3.7万
展开全部

所谓重根就是指方程(当然是指n次(n>=2))根,但是这些根可能有几个是一样的,就把这几个一样的叫做重根,有几个就叫做几重根,比如说,方程(x-1)^2=0,这个方程可以写成是(x-1)*(x-1)=0,所以x1=x2=1,就把x=1叫做方程的二重根。

扩展资料

对代数方程,即多项式方程,方程f(x) = 0有根x = a则说明f(x)有因子(x - a),从而可做多项式除法P(x) = f(x) / (x-a)结果仍是多项式。若P(x) = 0仍以x = a为根,则x= a是方程的重根。或令f1(x)为f(x)的导数,若f1(x) = 0也以x =a为根,则也能说明x= a是方程f(x)=0的重根。

如果 有  重因式  ,即其中,  是大于1的自然数,  是不含因式  的多项式,则称  存在重根  ,且其重数为  。

参考资料:百度百科 重根

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
蔷祀
高粉答主

推荐于2019-10-08 · 关注我不会让你失望
知道小有建树答主
回答量:552
采纳率:100%
帮助的人:14.8万
展开全部

所谓重根就是指方程(当然是指n次(n>=2))根,但是这些根可能有几个是一样的,就把这几个一样的叫做重根,有几个就叫做几重根。

比如说,方程(x-1)^2=0,这个方程可以写成是(x-1)*(x-1)=0,所以x1=x2=1,就把x=1叫做方程的二重根。

扩展资料

在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。理工科的不同专业,文史科的不同专业,深浅程度又各不相同。

研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。

初等数学研究的是常量与匀变量,高等数学研究的是非匀变量。高等数学(它是几门课程的总称)是理、工科院校一门重要的基础学科,也是非数学专业理工科专业学生的必修数学课,也是其它某些专业的必修课。

作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。

严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。

尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。

参考资料

二(汉字释义)_百度百科

高等数学_百度百科

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Dilraba学长
高粉答主

推荐于2019-10-25 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411038

向TA提问 私信TA
展开全部

例如f(x)=(x-1)^2则多项式的根是1就是二重根啊!

因为f(x)=(x-1)(x-1)

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

扩展资料

对代数方程,即多项式方程,方程f(x) = 0有根x = a则说明f(x)有因子(x - a),从而可做多项式除法P(x) = f(x) / (x-a)结果仍是多项式。若P(x) = 0仍以x = a为根,则x= a是方程的重根。或令f1(x)为f(x)的导数,若f1(x) = 0也以x =a为根,则也能说明x= a是方程f(x)=0的重根。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式