高中数学简单问题
M是椭圆C上一点,满足∠F1MF2=60°,且S△F1MF2=4/3√3(1)求椭圆C的方程(2)过点P(0,2)分别作直线PA、PB交椭圆C于A、B两点,设PA、PB的...
M是椭圆C上一点,满足∠F1MF2=60°,且S△F1MF2=4/3√3
(1) 求椭圆C的方程
(2) 过点P(0,2)分别作直线PA、PB交椭圆C于A、B两点,设PA、PB的斜率分别是k1,k2,且k1+k2=4,求证:直线AB过定点,并求出直线AB的斜率k的取值范围. 展开
(1) 求椭圆C的方程
(2) 过点P(0,2)分别作直线PA、PB交椭圆C于A、B两点,设PA、PB的斜率分别是k1,k2,且k1+k2=4,求证:直线AB过定点,并求出直线AB的斜率k的取值范围. 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询