A是三阶矩阵,r(A)=1,则特征值0:至少为A的二重特征值 为什么?
A是三阶矩阵,r(A)=1,说明矩阵A行列式为0,根据矩阵行列式的值=所有特征值的积得出:矩阵A必定有一个特征值为0;
由 r(A)=1,得出AX=0的基础解系含3-1=2个向量,所以矩阵A的属于特征值0的线性无关的特征向量有2个;所以0至少是A的2重特征值。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
扩展资料
设M是n阶方阵, I是单位矩阵, 如果存在一个数λ使得 M-λI 是奇异矩阵(即不可逆矩阵, 亦即行列式为零), 那么λ称为M的特征值。
在A变换的作用下,向量ξ仅仅在尺度上变为原来的λ倍。称ξ是A 的一个特征向量,λ是对应的特征值(本征值),是(实验中)能测得出来的量,与之对应在量子力学理论中,很多量并不能得以测量,当然,其他理论领域也有这一现象。
2023-08-25 广告
1、A是三阶矩阵,r(A)=1,说明矩阵A行列式为0,根据矩阵行列式的值=所有特征值的积得出:矩阵A必定有一个特征值为0;
2、由 r(A)=1,得出AX=0的基础解系含3-1=2个向量,所以矩阵A的属于特征值0的线性无关的特征向量有2个;所以0至少是A的2重特征值;
3、由于 A 的全部特征值的和等于 A 的迹 a11+a22+a33,所以 A 的另一个特征值为 a11+a22+a33;故当 a11+a22+a33 = 0 时,0 是A的3重特征值,当 a11+a22+a33≠0 时,0 是 A 的2重特征值。
扩展资料:
求矩阵的全部特征值和特征向量的方法如下:
1、计算的特征多项式;
2、求出特征方程的全部根,即为的全部特征值;
3、对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量是;(其中是不全为零的任意实数)。
参考资料来源:百度百科-特征值
2013-12-21
2013-12-21