高一数学,二十题怎么做,谢谢

巨蟹三不加
2014-06-23 · TA获得超过3769个赞
知道小有建树答主
回答量:1010
采纳率:0%
帮助的人:501万
展开全部
(1)证明:取CE的中点G,连FG、BG.
∵F为CD的中点,∴GF∥DE且GF=1 2 DE.
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又AB=1 2 DE,∴GF=AB.
∴四边形GFAB为平行四边形,则AF∥BG.
∵AF⊄平面BCE,BG⊂平面BCE,
∴AF∥平面BCE.
(2)证明:∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.
∵DE⊥平面ACD,AF⊂平面ACD,∴DE⊥AF.
又CD∩DE=D,故AF⊥平面CDE.
∵BG∥AF,∴BG⊥平面CDE.
∵BG⊂平面BCE,
∴平面BCE⊥平面CDE.
追问
我还没给图呢
追答

分析:(1)取CE的中点G,由三角形的中位线性质证明四边形GFAB为平行四边形,得到AF∥BG,从而证明AF∥平面BCE.
(2)通过证明AF⊥CD,DE⊥AF,从而证明AF⊥平面CDE,再利用BG∥AF证明BG⊥平面CDE,进而证明平面BCE⊥平面CDE.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式