如图,已知抛物线y=-x2+bx+c与x轴的相交于点A和点B(3,0),与y轴交于点C,且S△BOC=92.(1)求抛物线

如图,已知抛物线y=-x2+bx+c与x轴的相交于点A和点B(3,0),与y轴交于点C,且S△BOC=92.(1)求抛物线和直线BC的函数解析式;(2)设P直线BC上的动... 如图,已知抛物线y=-x2+bx+c与x轴的相交于点A和点B(3,0),与y轴交于点C,且S△BOC=92.(1)求抛物线和直线BC的函数解析式;(2)设P直线BC上的动点、Q是抛物线上的动点.问:是否存在以C、P、Q为顶点的三角形,使得它与△BOC相似?若存在,请直接写出线段PQ的长;若不存在,请说明理由;(3)在上述条件下,把直线BC绕C旋转.当直线与抛物线只有一个公共点时,求OP的最小值. 展开
 我来答
獨箍說丶624
2015-01-31 · 超过78用户采纳过TA的回答
知道答主
回答量:141
采纳率:100%
帮助的人:66.2万
展开全部
解:(1)∵抛物线y=-x2+bx+c与x轴的相交于点A和点B(3,0),与y轴交于点C;
∴OB=3,OC=c,-32+3b+c=0,
∵S△BOC=
1
2
OB?OC=
9
2

∴c=3,b=2;
∴抛物线的函数解析式为:y=-x2+2x+3;(2分)
设直线BC的函数解析式为y=kx+m,
0=3k+m
3=m

k=?1
m=3

∴直线BC的函数解析式为y=-x+3.(4分)

(2)由于OB=OC=3,则△OBC是等腰直角三角形,
若C、P、Q为顶点的三角形与△BOC相似,则△CPQ也必为等腰直角三角形,
①过C作直线CQ⊥BC,交抛物线于Q;
易知C(0,3),且直线BC:y=-x+3;
故直线CQ:y=x+3,联立抛物线的解析式有:
y=x+3
y=?x2+2x+3

解得
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消