已知函数f(x)=ax+lnx,其中a为常数,e为自然对数的底数.(1)求f(x)的单调区间;(2)若a<0,且f(

已知函数f(x)=ax+lnx,其中a为常数,e为自然对数的底数.(1)求f(x)的单调区间;(2)若a<0,且f(x)在区间(0,e]上的最大值为-2,求a的值;(3)... 已知函数f(x)=ax+lnx,其中a为常数,e为自然对数的底数.(1)求f(x)的单调区间;(2)若a<0,且f(x)在区间(0,e]上的最大值为-2,求a的值;(3)当a=-1时,试证明:x|f(x)|>lnx+12x. 展开
 我来答
性忆曼tR
2014-08-13 · 超过65用户采纳过TA的回答
知道答主
回答量:118
采纳率:50%
帮助的人:63.8万
展开全部
(1)证明:因为an=2an-1+1(n≥2),所以an+1=2(an-1+1)(n≥2),
所以数列{an+1}是以a1+1=2为首项,以2为公比的等比数列.
(2)解:由(1)知,an+1=2?2n-1=2n,∴an=2n-1
∴bn=log2(an+1)=n;
(3)解:
1
bnbn+2
1
n(n+2)
=
1
2
1
n
-
1
n+2

∴Sn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n
-
1
n+2
)]=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)=
3
4
-
1
2(n+1)
-
1
2(n+2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式