如何证明可导函数为奇函数,原函数为偶函数
展开全部
已知:F'(x)=f(x);f(x)=-f(-x),x∈(-A,A),A为常数
求证:F(-x)=F(x)
证明:当x∈(-A,A),A为常数,
令x=任意t,t∈(-A,A),A为常数,
∵F'(x)=f(x);f(x)=-f(-x)
∴F(-t)
=∫[下限-A,上限-t]F'(-t)
=∫[下限-A,上限-t]f(-t)
=∫[下限-A,上限-t][-f(t)]
=-∫)=∫[下限-A,上限-t]f(t);
而F(t)
=∫[下限-A,上限t]F'(t)
=∫[下限-A,上限t]f(t)
=∫[下限-A,上限-t]f(t)+∫[下限-t,上限t]f(x)
{∵f(x)=-f(-x),∴∫[下限-t,上限t]f(x)=0}
=∫[下限-A,上限-t]f(t)
∴F(-x)=F(x)得证
所以,导函数是奇函数则原函数是偶函数。
如果要通俗证明的话可以利用函数图像的性质。
比如,做一个以原点对称的任意奇函数图形,它在定义域内与x轴围成的面积就是其原函数的函数图形。
由于x轴下方的面积是为负,而函数图像是关于原点对称的,也就是说[a,o]与[0,a](a属于定义域)范围内的图像总是分处在x轴的上下两边,并且面积是相等的。因此,这两块面积相加的和总是等于零。
原函数取某个值的图像是从定义域左端到定义域上某点(x)范围内图形的面积,而从x到-x范围,图像的面积为零。因此,原函数取某个值(x)的图像面积等于它取(-x)的图像的面积。这意味着原函数在这两点上是等值的。由于x是任意取的值,因此,可以说明图像上所有点都具有这个性质,即图像面积关于y轴对称。
这样,就可以证明原函数是偶函数。
求证:F(-x)=F(x)
证明:当x∈(-A,A),A为常数,
令x=任意t,t∈(-A,A),A为常数,
∵F'(x)=f(x);f(x)=-f(-x)
∴F(-t)
=∫[下限-A,上限-t]F'(-t)
=∫[下限-A,上限-t]f(-t)
=∫[下限-A,上限-t][-f(t)]
=-∫)=∫[下限-A,上限-t]f(t);
而F(t)
=∫[下限-A,上限t]F'(t)
=∫[下限-A,上限t]f(t)
=∫[下限-A,上限-t]f(t)+∫[下限-t,上限t]f(x)
{∵f(x)=-f(-x),∴∫[下限-t,上限t]f(x)=0}
=∫[下限-A,上限-t]f(t)
∴F(-x)=F(x)得证
所以,导函数是奇函数则原函数是偶函数。
如果要通俗证明的话可以利用函数图像的性质。
比如,做一个以原点对称的任意奇函数图形,它在定义域内与x轴围成的面积就是其原函数的函数图形。
由于x轴下方的面积是为负,而函数图像是关于原点对称的,也就是说[a,o]与[0,a](a属于定义域)范围内的图像总是分处在x轴的上下两边,并且面积是相等的。因此,这两块面积相加的和总是等于零。
原函数取某个值的图像是从定义域左端到定义域上某点(x)范围内图形的面积,而从x到-x范围,图像的面积为零。因此,原函数取某个值(x)的图像面积等于它取(-x)的图像的面积。这意味着原函数在这两点上是等值的。由于x是任意取的值,因此,可以说明图像上所有点都具有这个性质,即图像面积关于y轴对称。
这样,就可以证明原函数是偶函数。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询