用python K值聚类识别图片主要颜色的程序,算法python代码已经有了
算法代码:http://blog.zeevgilovitz.com/detecting-dominant-colours-in-python/需求:现在C盘底下有一个pi...
算法代码:http://blog.zeevgilovitz.com/detecting-dominant-colours-in-python/
需求:
现在C盘底下有一个pic的文件夹,里面有很多图片
需要写一个程序,分析每一张图片的主要颜色(选出一个最能代表整个图片的颜色,算法自定,随便百度看看吧)
结果就是每张图片得出3个rgb值,写在一个记事本里面。。。
其实很简单啦,主要就是加个输入、输出语句就好啦 展开
需求:
现在C盘底下有一个pic的文件夹,里面有很多图片
需要写一个程序,分析每一张图片的主要颜色(选出一个最能代表整个图片的颜色,算法自定,随便百度看看吧)
结果就是每张图片得出3个rgb值,写在一个记事本里面。。。
其实很简单啦,主要就是加个输入、输出语句就好啦 展开
2个回答
展开全部
难得被人求助一次, 这个必须回答一下. 不过你的需求确实没有写得太清楚. 根据k值算法出来的是主要颜色有三个, 所以我把三个颜色都打在记事本里了. 如果和你的需求有误, 请自行解决吧.
另外这里需要用到numpy的库, 希望你装了, 如果没装, 这个直接安装也比较麻烦, 可以看一下portablepython的绿色版。
代码如下:
# -*- coding: utf-8 -*-
import Image
import random
import numpy
class Cluster(object):
def __init__(self):
self.pixels = []
self.centroid = None
def addPoint(self, pixel):
self.pixels.append(pixel)
def setNewCentroid(self):
R = [colour[0] for colour in self.pixels]
G = [colour[1] for colour in self.pixels]
B = [colour[2] for colour in self.pixels]
R = sum(R) / len(R)
G = sum(G) / len(G)
B = sum(B) / len(B)
self.centroid = (R, G, B)
self.pixels = []
return self.centroid
class Kmeans(object):
def __init__(self, k=3, max_iterations=5, min_distance=5.0, size=200):
self.k = k
self.max_iterations = max_iterations
self.min_distance = min_distance
self.size = (size, size)
def run(self, image):
self.image = image
self.image.thumbnail(self.size)
self.pixels = numpy.array(image.getdata(), dtype=numpy.uint8)
self.clusters = [None for i in range(self.k)]
self.oldClusters = None
randomPixels = random.sample(self.pixels, self.k)
for idx in range(self.k):
self.clusters[idx] = Cluster()
self.clusters[idx].centroid = randomPixels[idx]
iterations = 0
while self.shouldExit(iterations) is False:
self.oldClusters = [cluster.centroid for cluster in self.clusters]
print iterations
for pixel in self.pixels:
self.assignClusters(pixel)
for cluster in self.clusters:
cluster.setNewCentroid()
iterations += 1
return [cluster.centroid for cluster in self.clusters]
def assignClusters(self, pixel):
shortest = float('Inf')
for cluster in self.clusters:
distance = self.calcDistance(cluster.centroid, pixel)
if distance < shortest:
shortest = distance
nearest = cluster
nearest.addPoint(pixel)
def calcDistance(self, a, b):
result = numpy.sqrt(sum((a - b) ** 2))
return result
def shouldExit(self, iterations):
if self.oldClusters is None:
return False
for idx in range(self.k):
dist = self.calcDistance(
numpy.array(self.clusters[idx].centroid),
numpy.array(self.oldClusters[idx])
)
if dist < self.min_distance:
return True
if iterations <= self.max_iterations:
return False
return True
# ############################################
# The remaining methods are used for debugging
def showImage(self):
self.image.show()
def showCentroidColours(self):
for cluster in self.clusters:
image = Image.new("RGB", (200, 200), cluster.centroid)
image.show()
def showClustering(self):
localPixels = [None] * len(self.image.getdata())
for idx, pixel in enumerate(self.pixels):
shortest = float('Inf')
for cluster in self.clusters:
distance = self.calcDistance(
cluster.centroid,
pixel
)
if distance < shortest:
shortest = distance
nearest = cluster
localPixels[idx] = nearest.centroid
w, h = self.image.size
localPixels = numpy.asarray(localPixels)\
.astype('uint8')\
.reshape((h, w, 3))
colourMap = Image.fromarray(localPixels)
colourMap.show()
if __name__=="__main__":
from PIL import Image
import os
k_image=Kmeans()
path = r'.\\pics\\'
fp = open('file_color.txt','w')
for filename in os.listdir(path):
print path+filename
try:
color = k_image.run(Image.open(path+filename))
fp.write('The color of '+filename+' is '+str(color)+'\n')
except:
print "This file format is not support"
fp.close()
来自:求助得到的回答
展开全部
您好,这样的:
# -*- coding: utf-8 -*-
import colorsys
def get_dominant_color(image):
#颜色模式转换,以便输出rgb颜色值
image = image.convert('RGBA')
#生成缩略图,减少计算量,减小cpu压力
image.thumbnail((200, 200))
max_score = None
dominant_color = None
for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# 跳过纯黑色
if a == 0:
continue
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) >> 13, 235)
y = (y - 16.0) / (235 - 16)
# 忽略高亮色
if y > 0.9:
continue
# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don't completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count
if score > max_score:
max_score = score
dominant_color = (r, g, b)
return dominant_color
if __name__=="__main__":
from PIL import Image
import os
path = r'.\\pics\\'
fp = open('file_color.txt','w')
for filename in os.listdir(path):
print path+filename
try:
color = get_dominant_color(Image.open(path+filename))
fp.write('The color of '+filename+' is '+str(color)+'\n')
except:
print "This file format is not support"
fp.close()
# -*- coding: utf-8 -*-
import colorsys
def get_dominant_color(image):
#颜色模式转换,以便输出rgb颜色值
image = image.convert('RGBA')
#生成缩略图,减少计算量,减小cpu压力
image.thumbnail((200, 200))
max_score = None
dominant_color = None
for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# 跳过纯黑色
if a == 0:
continue
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) >> 13, 235)
y = (y - 16.0) / (235 - 16)
# 忽略高亮色
if y > 0.9:
continue
# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don't completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count
if score > max_score:
max_score = score
dominant_color = (r, g, b)
return dominant_color
if __name__=="__main__":
from PIL import Image
import os
path = r'.\\pics\\'
fp = open('file_color.txt','w')
for filename in os.listdir(path):
print path+filename
try:
color = get_dominant_color(Image.open(path+filename))
fp.write('The color of '+filename+' is '+str(color)+'\n')
except:
print "This file format is not support"
fp.close()
追问
醉了。。。你抄的这个答案就是我问的
没有发现需求不一样了嘛。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询