垂径定理的证明
2015-03-30
希望采纳
如图 ,在⊙O中,DC为直径, AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD
证明
图示
连接OA、OB分别交⊙O于点A、点B
∵OA、OB是⊙O的半径
∴OA=OB
∴△OAB是等腰三角形
∵AB⊥DC
∴AE=BE,∠AOE=∠BOE(等腰三角形的三线合一性质)
∴弧AD=弧BD,∠AOC=∠BOC
∴弧AC=弧BC
推导定理
推论一:平分弦(不是直径)的直径垂直于这条弦,并且平
原本命题,其中CD垂直于直线AB
分这条弦所对的两段弧。
几何语言:因为DC是直径,AE=EB,所以直径DC垂直于弦AB,劣弧AD等于劣弧BD,优弧ACO=优弧BCO
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。
几何语言:因为DC垂直AB,AE=EB,所以DC是圆的直径,劣弧AD等于劣弧BD,优弧ACO=优弧BCO
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。
推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等
(证明时的理论依据就是上面的五条定理)
但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:
在5个条件中:
1.平分弦所对的一条弧
2.平分弦所对的另一条弧
3.平分弦
4.垂直于弦
5.经过圆心(或者说直径)
只要具备任意两个条件,就可以推出其他的三个结论
如图 ,在⊙O中,DC为直径, AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD
证明
图示
联结OA、OB分别交⊙O于点A、点B
∵OA、OB是⊙O的半径
∴OA=OB
∴△OAB是等腰三角形
∵AB⊥DC
∴AE=BE,∠AOE=∠BOE(等腰三角形的三线合一性质)
∴弧AD=弧BD,∠AOC=∠BOC
∴弧AC=弧BC
垂径定理是数学几何(圆)中的一个定理,它的通俗的表达是:垂直于弦的直径平分弦且平分这条弦所对的两条弧。
如图 ,在⊙O中,DC为直径, AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD
证明:
连接OA、OB分别交⊙O于点A、点B
∵OA、OB是⊙O的半径
∴OA=OB
∴△OAB是等腰三角形
∵AB⊥DC
∴AE=BE,∠AOE=∠BOE(等腰三角形三线合一)
∴弧AD=弧BD,∠AOC=∠BOC
∴弧AC=弧BC
扩展资料:
垂径定理的推论一:平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。
几何语言:∵DC是直径,AE=EB
∴直径DC垂直于弦AB,劣弧AD等于劣弧BD,优弧ACO=优弧BCO
垂径定理的推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。
几何语言:∵DC垂直AB,AE=EB
∴DC是圆的直径,劣弧AD等于劣弧BD,优弧ACO=优弧BCO
垂径定理的推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。
垂径定理的推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。
证明:
连接OA、OB分别交⊙O于点A、点B
∵OA、OB是⊙O的半径
∴OA=OB
∴△OAB是等腰三角形
∵AB⊥DC
∴AE=BE,∠AOE=∠BOE(等腰三角形三线合一)
∴弧AD=弧BD,∠AOC=∠BOC
∴弧AC=弧BC
扩展资料:
垂径定理是圆的重要性质之一,它是证明圆内线段、角相等、垂直关系的重要依据,也为圆中的计算、证明和作图提供了依据、思路和方法。
推论一:平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。
几何语言:
∵DC是直径,AE=EB
∴直径DC垂直于弦AB,劣弧AD等于劣弧BD,优弧ACO=优弧BCO
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。
几何语言:
∵DC垂直AB,AE=EB
∴DC是圆的直径,劣弧AD等于劣弧BD,优弧ACO=优弧BCO
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。
参考资料来源:百度百科——垂径定理