cosx的n次方的不定积分是多少,
具体如图:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
证明:如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。
设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。
这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。
由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。
因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
扩展资料:
设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu
两边积分,得分部积分公式
∫udv=uv-∫vdu。 ⑴
称公式⑴为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到.
分部积分公式运用成败的关键是恰当地选择u,v
一般来说,u,v 选取的原则是:
1、积分容易者选为v ,求导简单者选为u。
例子:∫Inx dx中应设U=Inx,V=x
分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。
有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.
可以证明,任何真分式总能分解为部分分式之和。
解答如图:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
证明:如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。
设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。
这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。
由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。
因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
扩展资料:
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
推荐于2017-10-14 · 知道合伙人教育行家
设y=sinx*(cosx)^(n-1)
dy/dx=[(cosx)^(n-1)]*dsinx/dx+sinx*d(cosx)^(n-1)/d(cosx)*dcosx/dx,导数商法则
=[(cosx)^(n-1)]*cosx+sinx*(n-1)*[(cosx)^(n-2)]*(-sinx),导数链式法则
=(cosx)^n-sin²x*(n-1)[(cosx)^(n-2)],整合
=(cosx)^n-(1-cos²x)(n-1)[(cosx)^(n-2)],三角恒等式sin²x+cos²x=1
=(cosx)^n-(n-1)[(cosx)^(n-2)]+n(cosx)^n-(cosx)^n,分配律
=n(cosx)^n-(n-1)*(cosx)^(n-2),整合,(cosx)^n项相消
∵d/dx[sinx*(cosx)^(n-1)]=n(cosx)^n-(n-1)*(cosx)^(n-2)
∴n(cosx)^n=d/dx[sinx*(cosx)^(n-1)]+(n-1)*(cosx)^(n-2),令含有(cosx)^n变为主项
∴∫(cosx)^n
dx=[sinx*cosx^(n-1)]/n+(n-1)/n*∫(cosx)^(n-2)
dx,两边除以n得到答案
由积分推导:
∫(cosx)^n
dx
=∫[(cosx)^(n-1)]cosx
dx,(cosx)^n降幂一次给出cosx
=∫[(cosx)^(n-1)]
d(sinx),积分cosx等于sinx
=[(cosx)^(n-1)]sinx-∫sinx
d[(cosx)^(n-1)],分部积分法
=[(cosx)^(n-1)]sinx-(n-1)∫[(cosx)^(n-2)]sin²x
dx,微分(cosx)^(n-1)得出(n-1)[(cosx)^(n-2)]sinx
=[(cosx)^(n-1)]sinx-(n-1)∫[(cosx)^(n-2)](1-cos²x)
dx,三角恒等式sin²x+cos²x=1
=[(cosx)^(n-1)]sinx-(n-1)∫[(cosx)^(n-2)]
dx+(n-1)∫(cosx)^n
dx,分配律
[(n-1)+1]∫(cosx)^n
dx=[(cosx)^(n-1)]sinx-(n-1)∫(cosx)^(n-2)
dx,移项
∫(cosx)^n
dx=(1/n)[(cosx)^(n-1)]sinx+[(n-1)/n]∫(cosx)^(n-2)
dx,两边除以n得到答案