已知sin(α-π/4)=(7根号2)/10.且π/2<α<(3π)/4.求tan(2α+π/4)
展开全部
sin(α-π/4)=(7√2)/10
π/2<α<(3π)/4.
π/4<α-π/4<π/2.
cos(α-π/4)=√2/10
sinα-cosα=7/5........(1)
sinα+cosα=1/5........(2)
解(1)(2)得
sinα=4/5, cosα=-3/5
tanα=sinα/cosα=-4/3
tan2α=2tanα/[1-(tanα)^2]=2*(-4/3)/[1-16/9]=24/7
tan(2α+π/4)=(1+tan2α)/(1-tan2α)=(1+24/7)/(1-24/7)=-31/17
tan(2α+π/4)=-31/17
π/2<α<(3π)/4.
π/4<α-π/4<π/2.
cos(α-π/4)=√2/10
sinα-cosα=7/5........(1)
sinα+cosα=1/5........(2)
解(1)(2)得
sinα=4/5, cosα=-3/5
tanα=sinα/cosα=-4/3
tan2α=2tanα/[1-(tanα)^2]=2*(-4/3)/[1-16/9]=24/7
tan(2α+π/4)=(1+tan2α)/(1-tan2α)=(1+24/7)/(1-24/7)=-31/17
tan(2α+π/4)=-31/17
展开全部
π/2<α<(3π)/4.
→π/4<α-π/4<π/2.
则cos(α-π/4)=√[1-sin^2 (α-π/4)]=√2/10.
sin(2α-π/2)
=2·sin(α-π/4)·cos(α-π/4)
=7/25.
即cos 2α=-7/25
∴sin 2α
=√[1-cos^2 2α]
=-24/25.
则tan 2α=sin 2α /cos 2α=24/7.
则tan(2α+π/4)
=(tan 2α + tan π/4) /(1- tan 2α · tan π/4)
=(24/7 + 1)/[1-(24/7)×1]
= -31/17
→π/4<α-π/4<π/2.
则cos(α-π/4)=√[1-sin^2 (α-π/4)]=√2/10.
sin(2α-π/2)
=2·sin(α-π/4)·cos(α-π/4)
=7/25.
即cos 2α=-7/25
∴sin 2α
=√[1-cos^2 2α]
=-24/25.
则tan 2α=sin 2α /cos 2α=24/7.
则tan(2α+π/4)
=(tan 2α + tan π/4) /(1- tan 2α · tan π/4)
=(24/7 + 1)/[1-(24/7)×1]
= -31/17
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询