x/(1+cosx)的积分
解答过程如下:
∫[x/(1+cosx)] dx
=(1/2)∫x(sec(x/2))^2 dx
=∫x dtan(x/2)
=xtan(x/2) - ∫tan(x/2) dx
=xtan(x/2) + 2ln|cos(x/2)| +C
扩展资料
不定积分的解题技巧:
1、利用不定积分概念性质和基本积分公式求不定积分
这种方法的关键是深刻理解不定积分的概念、基本性质,熟练掌握、牢记不定积分的基本积分公式,当然包括对微分公式的熟练应用。
2、利用换元积分法求不定积分
换元积分法是求不定积分最主要的方法之一,有两类,第一类换元积分法通常称“凑”微分法,实质上是复合函数求导运算的逆运算,通过“凑”微分,使新的积分形式是基本积分公式或扩充的积分公式所具有的形式,从而求得所求积分。
第二类换元积分法是直接寻找代换x=φ(t),φ(t)单调可导,使代换后的新积分容易求出,一般来说寻找代换x=φ(t)不是一件容易的事,这就注定不定积分的计算一般都很困难,只有通过大量练习才能熟练掌握。
3、利用倒代换求不定积分
倒代换是换元积分法的一种,利用倒代换,常可消去被积函数的分母中的变量因子,或者化解被积函数,使不定积分容易求出。
4、有理函数的积分法
用待定系数法化被积函数为部分方式之和,再对每个部分分式逐项积分。
∫x/(1+cosx)dx=xtan(x/2) + 2ln|cos(x/2)| +C。C为积分常数。
解答过程如下:
∫[x/(1+cosx)] dx
=(1/2)∫x(sec(x/2))^2 dx
=∫x dtan(x/2)
=xtan(x/2) - ∫tan(x/2) dx
=xtan(x/2) + 2ln|cos(x/2)| +C
扩展资料:
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
求不定积分的方法:
第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
广告 您可能关注的内容 |