y=√[(x-1)(x-2)/(x-3)]
定义域1≤x≤2∪x>3
lny=½ln[(x-1)(x-2)/(x-3)]没问题
但由于x-1<0,x-2<0,故=½[ln(x-1)+ln(x-2)-ln(x-3)]就有问题了,必须分段讨论。
还是直接用
复合函数求导吧
u=[(x-1)(x-2)/(x-3)]=(x²-3x+2)/(x-3)
u'=[(2x-3)(x-3)-(x²-3x+2)]/(x-3)²
=(x²-3x+7)/(x-3)²
y=√u
y'=[1/(2√u)]·u'
={1/2√[(x-1)(x-2)/(x-3)]}·(x²-3x+7)/(x-3)²