不定积分题
展开全部
42题,分享一种解法。设x=sinθ,∴原式=∫cosθdθ/(sinθ+cosθ)。再设I1=原式=∫cosθdθ/(sinθ+cosθ),I2=∫sinθdθ/(sinθ+cosθ)。 ∴I1+I2=∫dθ=θ+C1,I1-I2=∫(cosθ-sinθ)dθ/(sinθ+cosθ)=ln(sinθ+cosθ)+c2。 ∴原式=I1=(1/2)[θ+ln(sinθ+cosθ)]+C=(1/2)[arcsinx+ln(x+√(1-x2))]+C。 44题。∵x3+1=x(x2+1)-x+1,∴原式=∫xdx/(1+x2)-∫xdx/(1+x2)2+∫dx/(1+x2)2。而,∫xdx/(1+x2)=(1/2)ln(1+x2)+C1、∫xdx/(1+x2)2=(1/2)/(1+x2)+C2。对∫dx/(1+x2)2,设x=tanθ,∴∫dx/(1+x2)2=∫cos2θdθ=(1/2)[θ+(1/2)sin2θ]+C3=(1/2)[arctanx+x/(1+x2)]+C3, ∴原式=(1/2)[ln(1+x2)+(1+x)/(1+x2)+arctanx]+C。供参考。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询