高数,求积分
展开全部
设 √[(k-x)/x] = u, 则 (k-x)/x = u^2, x = k/(1+u^2), dx = -2kudu/(1+u^2)^2,
I = -2k∫u^2du/(1+u^2)^2, 令 u = tanv
I = -2k∫(tanv)^2(secv)^2dv/(secv)^4 = -2k∫(tanv)^2(cosv)^2dv
= -2k∫(sinv)^2dv = -k∫(1-cos2v)dv
= -k[v - (1/2)sin2v] + C = -k[v - sinvcosv] + C
= -k[arctanu - u/(1+u^2)] + C
= -karctan√[(k-x)/x] + k√[(k-x)/x]/(k/x) + C
= -k[arctan√[(k-x)/x] + √[x(k-x)] + C
I = -2k∫u^2du/(1+u^2)^2, 令 u = tanv
I = -2k∫(tanv)^2(secv)^2dv/(secv)^4 = -2k∫(tanv)^2(cosv)^2dv
= -2k∫(sinv)^2dv = -k∫(1-cos2v)dv
= -k[v - (1/2)sin2v] + C = -k[v - sinvcosv] + C
= -k[arctanu - u/(1+u^2)] + C
= -karctan√[(k-x)/x] + k√[(k-x)/x]/(k/x) + C
= -k[arctan√[(k-x)/x] + √[x(k-x)] + C
更多追问追答
追问
这个函数的定积分范围是[0 x],请问有解啊?
追答
k > 0 时, limarctan√[(k-x)/x] = π/2,
定积分是 -karctan√[(k-x)/x] + √[x(k-x)] + kπ/2;
limarctan√[(k-x)/x] = -π/2,
定积分是 -karctan√[(k-x)/x] + √[x(k-x)] - kπ/2;
k arctan√[(k-x)/x] = -π/2,
定积分是 -karctan√[(k-x)/x] + √[x(k-x)] - kπ/2;
limarctan√[(k-x)/x] = π/2,
定积分是 -karctan√[(k-x)/x] + √[x(k-x)] + kπ/2.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |