数学几何题,急
1个回答
展开全部
解:连接AC,BD,相交于K点.因为弧AB+弧CD=弧BC+弧AD,所以角CBD+角BCA=角CAB+角DAB,在三角形ABC中,角CBD+角BCA+角CAB+角DAB=180度,所以角CBD+角BCA=角CAB+角DAB=90度,则有AC垂直于BD.
设:KA=A1,KB=A2,KC=A3,KD=A4,AB=11,BC=9,CD=3
故:AD^2=A1^2+A4^2=A1^2+(9-A3^2)=A1^2+(9-(81-A2^2))=A1^2+(9-(81-(121-A1^2)))=49
所以:AD=7
设:KA=A1,KB=A2,KC=A3,KD=A4,AB=11,BC=9,CD=3
故:AD^2=A1^2+A4^2=A1^2+(9-A3^2)=A1^2+(9-(81-A2^2))=A1^2+(9-(81-(121-A1^2)))=49
所以:AD=7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询